TASK DISPATCH THROUGH ONLINE TRAINING FOR PROFIT MAXIMIZATION AT THE CLOUD

Sowndarya Sundar and Ben Liang

IEEE INFOCOM Workshop on Network Intelligence
29th April, 2019
Computational Offloading

- Improves response time of computation-intensive tasks
- Improves mobile device’s battery lifetime

Problem: Where to schedule the tasks at the cloud?
- Heterogeneous cloud servers
- Server load constraints
- Online task arrivals

Objective:
- To maximize profit for a cloud service provider (CSP)
Related Work

• Offline problems [Zhou, 2015], [Mao, 2017], [Chen, 2018]
• Online problems
 • Fluid tasks [Liu, 2016], [Goudarzi, 2011]
 • Homogeneous resources [Peng, 2015], [Champati, 2017]
 • Various objectives: makespan [Fang, 2010], response time [Liu, 2016]
 • Often heuristic solutions
System Model and Problem Formulation
Cloud Servers and Task Arrival

- Processor \(r \) in CS \(k \) generates profit \(p_{rk} \) per unit time.
- Tasks arrive at CSP’s controller at average rate \(\lambda \) tasks per unit time.
- Task \(j \) requires processing time \(t_{jrk} \) on processor \(r \) in CS \(k \).
 - Known only once the task arrives at the controller.
Task Scheduling

- Controller distributes tasks among processors

- Decision variables:
 \[x_{jrk} = 1 \text{, if task } j \text{ is to be scheduled on processor } r \text{ of CS } k, \text{ and 0 otherwise.} \]

- Task scheduling constraints:
 1. Load (total execution time) constraints \(L \) on each processor
 2. Each task can be executed on at most one processor
Online Profit Maximization

$$\text{maximize} \quad \sum_{j=1}^{M} \sum_{k=1}^{K} \sum_{r=1}^{P_k} p_{rk} t_{jrk} x_{jrk}$$

subject to

$$x_{jrk} \in \{0, 1\} \quad \forall j \in \{1, \ldots, M\}, \quad k \in \{1, \ldots, K\}, \quad r \in \{1, \ldots, P_k\}.$$

- To maximize total profit over duration T
- Total number of tasks M that arrive within T is random.
- We also do not know the processing times t_{jrk} in advance.
Task Dispatch through Online Training (TDOT)
TDOT Outline

- Consists of a training phase and an exploitation phase.
- Balanced by a user-defined parameter, $0 < \epsilon < 1$
- Allows profit to be collected from partially-completed tasks
Training Phase

Expected number of tasks: \(E[M] = \lambda T \)

- Observe the first \(\lfloor \epsilon \lambda T \rfloor \) arriving tasks: **training set** \(A \)
- Allocate \(\epsilon L \) load constraint to \(A \)
- Arbitrarily schedule these tasks
 - Only to learn the characteristics of tasks
Training Phase (cont.)

• Find **weights** (Lagrange multipliers)

\[
\mathbf{u}^* = \text{argmin}_{\mathbf{u} \geq 0} \, D(\mathbf{u}, \mathcal{A})
\]

Dual of binary-relaxed offline problem

• One weight value for each processor.

• Contains information about the **resource demand with respect to the processor load**.
Exploitation Phase

• Applied to non-training set of tasks A^c
• For each arriving task, we use weights u to obtain the scheduling decision:

$$(r', k') = \arg \max_{r,k} (p_{rk} - u^*_{rk}) t_{jrk}$$

Chosen Processor

(Unit profit – Weight) x Processing time

• Apply remaining load constraint: $(1 - \epsilon)L$
Properties of TDOT

- Single-shot algorithm: no iteration
- Efficient solution: linear programming
- Particularly useful if tasks arriving within duration T have similar characteristics.
- Can prove a performance bound for i.i.d. tasks.
Performance Bound

Theorem 1. If \(\frac{OPT}{c_{\text{max}}} \geq KP_{\text{max}} \frac{\ln(K^2 P_{\text{max}}^2/\epsilon)}{\epsilon^3}\), then we have \(\mathbb{E}_{M}[\mathbb{E}[S(u^*, A^c)|M]] \geq (1 - 2\epsilon - \epsilon \sqrt{\lambda T \mathbb{E}_{M}[\frac{1}{\sqrt{M}}]}) \text{OPT}\).

- OPT: maximum profit over \(T\) time slots (offline)
- \(c_{\text{max}}\): Max. profit per unit time
- \(K\): Number of CSs
- \(P_{\text{max}}\): Max. number of processors in a CS

Expected TDOT profit on non-training set

Offline optimal profit

Easily-met condition
Performance Bound (cont.)

Theorem 1. If \(\frac{\text{OPT}}{c_{\max}} \geq KP_{\max} \frac{\ln(K^2P_{\max}^2/\epsilon)}{\epsilon^3} \), then we have

\[
E_M[\mathbb{E}[S(u^*, A^c)|M]] \geq \left(1 - 2\epsilon - \epsilon \sqrt{\lambda T E_M \left[\frac{1}{\sqrt{M}} \right]} \right) \text{OPT}.
\]

Performance depends on \(0 < \epsilon < 1 \) : proportion of tasks in training set, i.e., \(\frac{|A|}{E[M]} \).
TDOT with Greedy Scheduling (TDOT-G)
TDOT-G

- Profit only obtained from **fully-completed** tasks
- If task cannot be scheduled on the **best** processor, we try the **second best, third best**, and so on.
Time Complexity Analysis

- Training phase: \(O((|A|P)^{3.5}) \)
 where \(P \) is total number of processors.

- Exploitation phase:
 \[
 O((1 - \epsilon)M) \quad \text{for TDOT.}
 \]
 \[
 O((1 - \epsilon)MP) \quad \text{for TDOT-G.}
 \]
Trace-Driven Simulation Results
Comparison Targets

- **Greedy Algorithm**: greedily schedules each task to processor with maximum profit
- **Logistic Regression (LR)**: treats profit maximization as a classification problem
- **Logistic Regression – Greedy (LR-G)**: hybrid technique
- **Upper Bound Offline**: upper bound to the optimal solution, assuming all task information is known in advance.
Simulation Setup and Task Times

- We use publicly-available Google cluster data
- We use the task events information to obtain task arrival times, and compute average arrival rate λ.
- We use task usage information to obtain task execution times.
- Assume the number of tasks, M, is Poisson with rate λT.
 - Unknown a priori
 - Task arrival process unimportant
Profit on Non-Training Set

Fig. 1: Effect of max. load L on non-training set profit
Overall Profit

Fig. 2: Effect of ϵ on overall profit
Observations

• TDOT more effectively transfers information from training to non-training set

• Picking the right proportion of training data is important (~20% of expected number of tasks).

• Greedy scheduling of edge cases improves performance (TDOT-G > TDOT)
Summary

• Task scheduling to maximize profit under load constraints and online task arrivals.

• Proposed TDOT and TDOT-G, consisting of training and exploitation phases.

• Low-complexity solutions

• Performance bound for TDOT

• Trace-driven simulation demonstrates superior performance